Вариант № 52417

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 1124
i

На ко­ор­ди­нат­ной пря­мой от­ме­че­ны точки А, В, С, D, E. Если рас­сто­я­ние между A и С равно  дробь: чис­ли­тель: 4, зна­ме­на­тель: 7 конец дроби , то ближе дру­гих к точке с ко­ор­ди­на­той 0,5 рас­по­ло­же­на точка:



2
Задание № 182
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но пря­мой l.

1)

2)

3)

4)

5)



3
Задание № 1654
i

Ука­жи­те номер вы­ра­же­ния, ко­то­рое опре­де­ля­ет, сколь­ко сан­ти­мет­ров в х м 9 дм.

1) 100х + 9;2) 100х + 903) 90x4) 10x + 905) 10x + 9


4
Задание № 1031
i

Вы­ра­зи­те a из ра­вен­ства  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2b плюс 1 конец дроби = дробь: чис­ли­тель: 6, зна­ме­на­тель: a минус b конец дроби .



5
Задание № 5
i

Из точки А к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и АС и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти О. Точки В, С, M лежат на окруж­но­сти (см. рис.). Най­ди­те ве­ли­чи­ну угла AOB, если \angle CAO = 25 гра­ду­сов.



6
Задание № 66
i

Число 133 яв­ля­ет­ся чле­ном ариф­ме­ти­че­ской про­грес­сии 4, 7, 10, 13, ... Ука­жи­те его номер.



7
Задание № 217
i

Точки A, B, C раз­де­ли­ли окруж­ность так, что гра­дус­ные меры дуг AB, BC, CA в ука­зан­ном по­ряд­ке на­хо­дят­ся в от­но­ше­нии 5 : 7 : 6. Най­ди­те гра­дус­ную меру угла ABC.



8
Задание № 188
i

Пусть a  =  5,4; b  =  3,2 · 101. Най­ди­те про­из­ве­де­ние ab и за­пи­ши­те его в стан­дарт­ном виде.



9
Задание № 1660
i

Ha ко­ор­ди­нат­ной плос­ко­сти даны точки А и М, рас­по­ло­жен­ные в узлах сетки (см. рис.). Ука­жи­те ко­ор­ди­на­ты точки, сим­мет­рич­ной точке А от­но­си­тель­но точки М.



10
Задание № 1307
i

Пусть x1 и x2  —  корни урав­не­ния x в квад­ра­те минус 3x плюс q=0. Най­ди­те число q, при ко­то­ром вы­пол­ня­ет­ся ра­вен­ство x_1 в квад­ра­те плюс x_2 в квад­ра­те =25.



11
Задание № 11
i

Ука­жи­те об­ласть зна­че­ний функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , за­дан­ной гра­фи­ком на про­ме­жут­ке [−2; 4] (см. рис.).



12
Задание № 102
i

Ре­ше­ни­ем не­ра­вен­ства

 дробь: чис­ли­тель: 26, зна­ме­на­тель: 3 конец дроби минус дробь: чис­ли­тель: 7x в квад­ра­те плюс 4x, зна­ме­на­тель: 7 конец дроби боль­ше дробь: чис­ли­тель: 2 минус 3x в квад­ра­те , зна­ме­на­тель: 3 конец дроби

яв­ля­ет­ся про­ме­жу­ток:



13
Задание № 1136
i

Най­ди­те зна­че­ние вы­ра­же­ния \arcctg левая круг­лая скоб­ка тан­генс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 5 конец дроби .



14
Задание № 194
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 8x + c, равно −3. Тогда зна­че­ние c равно:



15
Задание № 1312
i

Най­ди­те сумму всех на­ту­раль­ных чисел n, для ко­то­рых вы­пол­ня­ет­ся ра­вен­ство НОК(n,63)  =  63.



16
Задание № 76
i

Какая из пря­мых пе­ре­се­ка­ет гра­фик функ­ции y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x в квад­ра­те минус 3x плюс 11 в двух точ­ках?



17
Задание № 47
i

Рас­по­ло­жи­те числа  ко­рень 12 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 80 конец ар­гу­мен­та ; ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ; ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 конец ар­гу­мен­та в по­ряд­ке воз­рас­та­ния.



18
Задание № 1603
i

Вы­со­та ци­лин­дра в 3 раза боль­ше ра­ди­у­са его ос­но­ва­ния. Най­ди­те объем ци­лин­дра, если ра­ди­ус ос­но­ва­ния равен  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та .



19
Задание № 1604
i

Дана ариф­ме­ти­че­ская про­грес­сия (аn), у ко­то­рой а9 −  а5  =  12, a10  =  14. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­ния Окон­ча­ние пред­ло­же­ния

А)  Раз­ность этой про­грес­сии равна ...

Б)  Пер­вый член этой про­грес­сии равен ...

В)  Сумма пер­вых вось­ми чле­нов этой про­грес­сии равна ...

1)   2

2)  −13

3)  4

4)  −20

5)  3

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

20
Задание № 1047
i

Кон­фе­ты в ко­роб­ки упа­ко­вы­ва­ют­ся ря­да­ми, при­чем ко­ли­че­ство кон­фет в каж­дом ряду на 4 боль­ше, чем ко­ли­че­ство рядов. Ди­зайн ко­роб­ки из­ме­ни­ли, при этом до­ба­ви­ли 2 ряда, а в каж­дом ряду до­ба­ви­ли по 1 кон­фе­те. В ре­зуль­та­те ко­ли­че­ство кон­фет в ко­роб­ке уве­ли­чи­лось на 25. Сколь­ко кон­фет упа­ко­вы­ва­лось в ко­роб­ку пер­во­на­чаль­но?


Ответ:

21
Задание № 231
i

Най­ди­те мо­дуль раз­но­сти наи­боль­ше­го и наи­мень­ше­го кор­ней урав­не­ния  левая круг­лая скоб­ка 2x в квад­ра­те минус x минус 7 пра­вая круг­лая скоб­ка в квад­ра­те = левая круг­лая скоб­ка 5x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те .


Ответ:

22

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 54 пра­вая круг­лая скоб­ка мень­ше или равно 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка .


Ответ:

23
Задание № 1050
i

В па­рал­ле­ло­грам­ме с ост­рым углом 45° точка пе­ре­се­ния диа­го­на­лей уда­ле­на от пря­мых, со­дер­жа­щих не­рав­ные сто­ро­ны, на рас­сто­я­ния  дробь: чис­ли­тель: 7 ко­рень из 2 , зна­ме­на­тель: 2 конец дроби и 2. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма.


Ответ:

24
Задание № 24
i

Если x0  — ко­рень урав­не­ния 0,01 умно­жить на 2 в сте­пе­ни x умно­жить на 5 в сте­пе­ни x = левая круг­лая скоб­ка 0,01 пра­вая круг­лая скоб­ка в квад­ра­те умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 3x плюс 3 пра­вая круг­лая скоб­ка , то зна­че­ние вы­ра­же­ния 2 левая круг­лая скоб­ка x_0 минус 1 пра­вая круг­лая скоб­ка :x_0 равно... .


Ответ:

25
Задание № 85
i

Ре­ши­те урав­не­ние x в квад­ра­те минус 7x плюс 10= дробь: чис­ли­тель: 7, зна­ме­на­тель: x в квад­ра­те минус 11x плюс 28 конец дроби и най­ди­те сумму его кор­ней.


Ответ:

26
Задание № 56
i

Най­ди­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: синус в квад­ра­те 184 гра­ду­сов, зна­ме­на­тель: 4 синус в квад­ра­те 23 гра­ду­сов умно­жить на синус в квад­ра­те 2 гра­ду­сов умно­жить на синус в квад­ра­те 44 гра­ду­сов умно­жить на синус в квад­ра­те 67 гра­ду­сов конец дроби .


Ответ:

27
Задание № 267
i

Най­ди­те (в гра­ду­сах) сумму кор­ней урав­не­ния 10 синус 5x ко­си­нус 5x плюс 5 синус 10x ко­си­нус 18x=0 на про­ме­жут­ке (110°; 170°).


Ответ:

28
Задание № 28
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го от­ри­ца­тель­но­го и наи­мень­ше­го по­ло­жи­тель­но­го целых ре­ше­ний не­ра­вен­ства |4x минус 7| плюс |x плюс 6| боль­ше |3x минус 13|.


Ответ:

29
Задание № 269
i

Точка A дви­жет­ся по пе­ри­мет­ру тре­уголь­ни­ка KMP. Точки K1, M1, P1 лежат на ме­ди­а­нах тре­уголь­ни­ка KMP и делят их в от­но­ше­нии 11 : 3, счи­тая от вер­шин. По пе­ри­мет­ру тре­уголь­ни­ка K1M1P1 дви­жет­ся точка B со ско­ро­стью, в пять раз боль­шей, чем ско­рость точки A. Сколь­ко раз точка B обой­дет по пе­ри­мет­ру тре­уголь­ник K1M1P1 за то время, за ко­то­рое точка A два раза обой­дет по пе­ри­мет­ру тре­уголь­ник KMP?


Ответ:

30
Задание № 30
i

ABCA1В1С1  — пра­виль­ная тре­уголь­ная приз­ма, у ко­то­рой сто­ро­на ос­но­ва­ния и бо­ко­вое ребро имеют длину 6. Через се­ре­ди­ны ребер АС и BB1 и вер­ши­ну A1 приз­мы про­ве­де­на се­ку­щая плос­кость. Най­ди­те пло­щадь се­че­ния приз­мы этой плос­ко­стью.


Ответ:

31
Задание № 1790
i

Петя за­пи­сал на доске два раз­лич­ных на­ту­раль­ных числа. Затем он их сло­жил, пе­ре­мно­жил, вычел из боль­ше­го за­пи­сан­но­го числа мень­шее и раз­де­лил боль­шее на мень­шее. Сло­жив че­ты­ре по­лу­чен­ных ре­зуль­та­та, Петя по­лу­чил число 1521. Най­ди­те все такие пары на­ту­раль­ных чисел. В ответ за­пи­ши­те их сумму.


Ответ:

32
Задание № 1791
i

Ос­но­ва­ни­ем пи­ра­ми­ды SABCD яв­ля­ет­ся вы­пук­лый че­ты­рех­уголь­ник ABCD, диа­го­на­ли АС и BD ко­то­ро­го пер­пен­ди­ку­ляр­ны и пе­ре­се­ка­ют­ся в точке O, АО  =  9, ОС  =  16, ВО  =  OD  =  12. Вер­ши­на S пи­ра­ми­ды SABCD уда­ле­на на рас­сто­я­ние  дробь: чис­ли­тель: 61, зна­ме­на­тель: 7 конец дроби от каж­дой из пря­мых AB, BC, СD и AD. Через се­ре­ди­ну вы­со­ты пи­ра­ми­ды SABCD па­рал­лель­но ее ос­но­ва­нию про­ве­де­на се­ку­щая плос­кость, ко­то­рая делит пи­ра­ми­ду на две части. Най­ди­те зна­че­ние вы­ра­же­ния 10 · V, где V  — объем боль­шей из ча­стей.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.